
The fractal properties of generalised random walks in one dimension

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 2793

(http://iopscience.iop.org/0305-4470/19/14/017)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 2793-2812. Printed in Great Britain 

The fractal properties of generalised random walks in one 
dimension 

J G Powles and G Rickayzen 
The Physics Laboratories, University of Kent, Canterbury, Kent CT2 7NR, UK 

Received 16 December 1985, in final form 12 May 1986 

Abstract. The properties of a simple random walk and random walks with persistence of 
velocity, in one dimension, are reported. The finite-fractal properties of the walks are 
obtained, with exact expressions for indefinitely long walks. Remarkably simple expressions 
are found for the length, L(E) ,  at scale E. Computer simulations of these walks are reported 
for finite trajectories which help to explain the properties of atomic trajectories in realistic 
liquids determined by molecular dynamics simulation. Some new molecular dynamics 
simulations are reported for a typical liquid, its coexisting vapour and the crystal, all at 
the same temperature. The general form of the fractal properties of the three states of 
matter are well represented by the present one-dimensional model. Indeed, even the 
quantitative nature is quite well represented, which suggests that results for random walks 
in three dimensions will be substantially the same. 

1. Introduction 

Richardson (1961) suggests that trajectories (or trails) should be analysed using a 
(variable) scale of length, E, so that for a given trajectory the length is L( E ) .  L( E )  is 
measured by stepping along the trajectory from the beginning, r (O) ,  until a point is 
found, r (  t l ) ,  for which Ir( t l )  - r (0) I  = &for thefirst time and repeating this process, i.e. 
Ir( tn+l )  - r (  t , ) l=  E,  until the end of the trajectory is reached (usually adding a suitable 
fraction of E at the end). Richardson noted that many trajectories are self-scaling in 
the sense that 

L( E )  a E-*  

where a is a constant, in general non-integral, for a substantial range of E.  

More recently this idea has been elegantly exploited by Mandelbrot (1982) who 
pointed out that the coefficient (1 + a) may be interpreted as a 'dimension' which, in 
general, is not integral (Hausdorfl 1919) and which he calls a fractal dimension (which 
we call Dr). 

This procedure was first applied to the trajectories of atoms in a realistic liquid 
(actually a computer-simulated liquid) by Powles and Quirke (1984). 

Of course for E small, say much smaller than the mean free path E,, L( E )  approaches 
the contour length of the trajectory, L, (which is a function of T, where T is the total 
time for the trajectory). Thus for E + O  we have from (1.1) that a + O  (Dr+ 1). 

It was pointed out by Rapaport (1984,1985), who used a hard-sphere liquid, that 
our simulations were too short to achieve the expected limiting value of a for long T 
and that a + 1 (Df+ 2) for long enough trajectories for this liquid. 
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Powles (1985) then carried out longer simulations for his liquid and found values 
of a closer to unity but that the convergence is extraordinarily slow, possibly because 
the velocity autocorrelation functions have a ‘long-time tail’. This has recently been 
investigated by Toxvaerd (1985) who compared the behaviour of model liquids with 
and without long-time tails. Powles (1985) suggested a generalisation of the fractal 
analysis of physical trajectories in which a depends on the trajectory length, or 
maximum scale, E, , ,~ , ,  i.e. a (E,,,) ,  and gave an elementary analysis of this function 
which appears to explain the observed slow convergence. This was called finite-fractal 
analysis. A similar approach has been suggested by Takayasu (1982) who called 
[ a ( & )  + 1 3  the ‘differential fractal dimension’. 

This analysis has recently been applied to the trajectories of the mobile ions in 
superionic conductors by Vashishta et a1 (1985) who found similar finite-fractal curves 
but that the convergence of a to unity is relatively rapid for this system and establishes, 
with reasonable accuracy, that a ( c o ) = l .  A similar result has been found for two- 
dimensional molecular motion by Kalia et a1 (1985).  

The problem remains as to the form of L ( E ) / L ,  for fluid and quasifluid systems 
and how this depends on more familiar parameters of the atomic motion and, indeed, 
whether this analysis demands the introduction of other more subtle parameters of the 
motion. It has been asserted recently (Toxvaerd 1986) that it is sufficient to know the 
velocity time autocorrelation function, & ( t ) ,  but in our opinion this is still only an 
approximate theory for a ( E ) .  

It therefore seemed that it might be instructive to do a finite-fractal analysis for 
some simple, well defined and exactly analysable systems. In the following we do this 
for the simple random walk and some generalisations. This analysis throws light on 
the physical nature of realistic trajectories and suggests what the behaviour of the more 
interesting and important trajectories in the real world of three dimensions might be. 

2. Simple random walk in one dimension 

2.1. Elementary properties of the model 
The simplest random walk is one in which the particle travels at constant speed U, 
either in the positive or negative direction, a distance 1 for fixed time intervals T. If 
the velocity is + U  (or - U )  in a given step, then it is * U  in the next step with equal 
probability. This is a well known model for diffusional motion which is discussed in 
detail by Chandrasekhar (1943).  The mean-square distance travelled in n steps is 
readily obtained: 

with equal probability, so 
x [ n ~ ] = x [ ( n - l ) ~ ] * I  

( X ’ [  n T ] )  = f( { X [  ( n - 1 )  T ]  + I}‘) + f( { X [  ( n - 1 ) T ]  - 1)’)  
= ( x 2 [ ( n  - I ) T I ) +  1’ 

but ( ~ ‘ ( 0 ) )  = 0, therefore 
(x2 (  m))/ I* = n. (2 .1)  

Chandrasekhar shows that, for large n, the probability distribution of x, p ( x ,  t ) ,  
obeys the one-dimensional diffusion equation 
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with the diffusion constant D (not to be confused with the fractal dimension Df) given 
by 

D = 12/27. ( 2 . 3 )  

The velocity autocorrelation function, $Iu( t ) ,  for this model is readily calculated 
since if U is +U (or -U) at any given step it is equally likely to be * U  in any subsequent 
step, so correlation is completely lost in one step. Thus 

$ I ” ( t )  = ( U ( t ’ ) U ( t ’ +  t ) ) / ( U ’ ( t ’ ) >  

( t ’  for lattice points) 

1 
” ( t )  = { 0 

rU = lo* &( t )  dt. 

for O <  t < T 

for t > 7. 

The velocity correlation time, T,, is defined as 

For this model T~ = T and we note that $IU(?) is short-ranged. 

2.2. Finite-fractal properties 

We now calculate L(E)  where E = kl, k being a positive integer for a walk of n steps. 
Firstly we have, clearly, 

L,= n l =  l T / r  L( 1 )  = nl i.e:L(l)/L,= 1. ( 2 . 6 )  
Clearly, also, L( 1 / j ) /  L, = 1, where j is any positive integer. 

For a given trajectory of elapsed time T we have the basic relation 

L(E) = E ( T / ( t ( E ) ) )  ( 2 . 7 )  
where ( ? ( E ) )  is the mean time for the particle to travel from a given point on the 
trajectory to one a distance E away, for  the first time. For E small and T large the 
value of ( f ( E ) )  is precise but the accuracy decreases as E increases. 

We now evaluate L(E)  for an indefinitely long trajectory for which ( t ( E ) )  can be 
obtained exactly for all E. We shall discuss L( E )  for real, i.e. finite, trajectories shortly. 

We write (2 .7)  in the form 

L(E)/Lc = (E / l ) / [ ( t (E ) ) /71 .  (2 .7‘ )  

For E = 21 we get the pattern given in figure 1. Note that the paths which get to *21 
for the first time must be discarded (or rather not counted) for subsequent times. This 
first occurs at t = 27 and then at every interval of 27 ad  injnitum. This is indicated on 
the diagrams by a bold dot. Thus the probability of getting to 21 in time 2.r is 4, in 
time 47 is a, and so on. For t > 47 the pattern repeats, so that 

( t ( 2 1 ) ) / 7 =  ( 2 ~ f + 4 ~ : + 6 ~ : + .  . .)/(f+$+. . .) = 4  

i.e. 

L(21)/  L, = f. 
For E = 31 we get a similar diagram to figure 1, the pattern repeats after t = 57 and the 
series are readily summed. We find 

( t ( 3 1 ) ) /  7 = 9 L(31)/ L, = f. 
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x / l  
- 2  -1 0 1 2 

0 

1 

2 

t i T  

3 

4 

5 

Figure 1. The evaluation of probabilities for the random walk of I 2  for the calculation of 
the mean first passage time, ( [ ( E ) ) ,  for E / [  = 2 .  The full dots indicate the ‘absorption’ of 
probability when a trajectory gets to x = * E  for the first time. The pattern repeats after 
t = 27 with period 27. 

For E = 41, the diagram is more complex, there are no obvious repeats and the series 
are slower to converge. However, it is easy to convince oneself that (t(41))l.r = 16. 
There seems no point in proceeding further by exact analysis since it is quite straightfor- 
ward to compute ( t (  E ) )  to any desired accuracy for E = kl and k not too large. The 
first contribution to ( t (  k l ) )  is for t = k7 when the probabilities are simply proportional 
to the binomial coefficients. Thereafter the probabilities for t = ( k  + 2)7 are readily 
computed by simple recursive relations. We then soon conclude that 

L( kl ) /  L, = I /  k (2.8) 
exactly. 

solve ( 2 . 2 )  with the boundary conditions 

P(X, t )  = S(x) 

P ( * E ,  t )  = 0 

An asymptotic relation for large k is readily obtained from the diffusion limit. We 

for t = O  

for all t. 
The latter conditions arise because we must take the first occurrence of the interval E 

as we step along the trajectory. It corresponds to diffusion with totally absorbing 
barriers at x = * E  (see figure 1)  but with the motion of the surviving particles unaffected, 
i.e. D( = 1 2 / 2 7 )  is a constant independent of time. 

The general solution of (2.2) is 

p(X, t ) = x  ( A k  COS k X + &  Sin k X )  exp(-k2Dt). 
The constraints require that 

B k = O  1 Ak cos kE exp( -k2Dt)  = 0 for all t 

i.e. k = ( n  + ~ ) T / E ,  n integer including 0, so that 

C A , ,  cos(n+$)Tx/E=S(x) 
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whence A, = 1 / ~  and so 
m 

p(x, t )  = ( I /  E )  cos[( n +i).nx/ E ]  exp[ -( n + f ) 2 ~ 2 ~ t /  E ' ] .  
n = O  

The fraction of particles unabsorbed at time t, f ( t ) ,  is therefore 

We require the probability that a particle gets to * E  at time t ,  which we call p ( t ,  E )  

(not to be confused with p ( x ,  t ) )  with 

f ( t )  = (4/.n) C (-1)"(2n + I)- '  exp[-(n + f ) 2 . n 2 ~ t / ~ ' ] .  

p ( t ,  ~ ) = - d f / d t = ( ~ D / ~ ' )  ( -1)"(2n+l)  e~p[ - (n+ t )~ .n 'Dr /~ ' ] .  
Finally 

(D 

( r ( E ) ) =  jomdttp( t ,  ~ ) = [ 1 6 ~ ' / ( . n ' D ) ]  ( - l ) " ( 2 r 1 + l ) - ~  
n = O  

i.e. 
2D(t( & ) ) / E '  = (32/n3){1 - 3-'+ 5-' - . . .} = 1 

or E ~ = ~ D ( ~ ( E ) )  (see Furth 1917). This may be compared with (x2)=2Dt.  Hence, 
using (2.7) and substituting for 0, we have 

L(E)/ L, + 1/  ( E /  1 )  
in the diffusion limit, which is exactly the same as (2.8). Hence for this model we have 

a = -d[ln L(~) ] /d [ ln  E ]  = 1 

i.e. Df= 2 for all E = kl, k a positive integer. 
A formal proof of these results is given in appendix 2. However, this result is only 

true for infinite trajectories, i.e. for T -$cc and L, + CO, since we have taken the limiting 
values of ( ? ( E ) ) .  

It is instructive to obtain the corresponding results for actual finite trajectories. 
This is readily done on the computer since a trajectory can be generated very rapidly 
by the use of pseudo-random numbers. Having obtained the trajectory, L( kl )  can be 
calculated immediately. This is extremely fast because one can use integer arithmetic 
for this model. It is convenient to use, T /  T = 2", with m integer. 

The results of such a computation for one seed for a trajectory of increasing length 
are given in table 1 and figure 2. 

The entries in the table show how [ L ( k l ) / L , ] - '  tends to k as T increases. When 
k is small the convergence is rapid because L( k l )  includes a large number of steps of 
length E = kl. As k increases for a given trajectory, the number of steps included in 
L( kl)  decreases and it becomes more and more dependent on the particular trajectory. 
Notice that the maximum value of E, E,,, , which is of course also trajectory-sensitive, 
is much less than L, although it can be, and usually is, considerably larger than the 
end-to-end length, Le,,, of the particular trajectory. The mean value of Le,, is (Ix( T ) ( ) .  
A rough estimate of 

It is also easy to confirm the form of (x') given in (2.1) (see table 2) and of +,(t)  
given in (2.4) and these are reproduced to good accuracy even for quite short trajectories. 

The results in table 1 and figure 2 illustrate the slow convergence of the fractal 
properties analysis of the actual finite trajectories to the limiting values, (2.8), for an 
infinite trajectory. They have to be enormously longer in time T than T,, depending 
on the value of E. For example, for the shortest trajectory quoted we have a very poor 
result for even E /  1 = 2 whereas T = 647,. This slow convergence with increasing length 

is (x2( T))"'. These are also given in table 1. 
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Table 1. Values of [ L( k l ) /  LJ' for trajectories with n = 2" steps. 

k L , / I = T / r = 6 4  128 256 512 1024 2048 4096 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

1 1 1 
1.60 1.73 2.10 
2.29 2.78 3.12 
2.29 3.37 4.13 
2.67 4.27 5.12 
4.00 4.92 6.73 
3.56 4.00 6.73 

12.80 25.6 
12.80 25.6 
12.80 25.6 
10.67 21.3 
9.14 18.3 
8.00 16.0 
7.11 14.2 

1 
2.15 
3.28 
3.71 
4.13 
5.69 
6.56 

12.2 
17.1 
15.1 
13.5 
12.2 
25.6 
23.3 
21.3 
19.7 
18.3 
17.1 

1 
2.16 
3.05 
4.00 
4.00 
6.10 
6.83 

11.64 
13.12 
12.2 
11.4 
10.7 
12.8 
12.8 
12.2 
18.3 
17.7 
17.1 

1 
2.16 
3.15 
3.94 
4.57 
6.40 
7.11 
9.48 
9.84 

10.67 
10.8 
12.8 
16.8 
15.5 
14.4 
23.3 
21.8 
20.5 

1 
2.06 
2.98 
3.87 
4.53 
6.08 
6.80 
8.03 
9.18 

10.95 
11.9 
12.6 
13.7 
12.7 
11.9 
15.2 
22.3 
21.1 

E,,,/ 7 14 14 25 26 47 47 
n ' / l  

L e t e l  I 4 10 10 6 24 8 14 
b(T)l / l  6.4 9.0 12.8 18.0 25.5 36 51 

8 11.3 16 22.6 32 45.3 64 

of trajectory, in spite of the short-ranged velocity autocorrelation function, is similar 
to that observed for realistic trajectories (e.g. Powles 1985). It may be contrasted with 
the situation for diffusion, where the exact result for an infinite trajectory is given in 
(2.1), i.e. 

(X*)( t ) /  l 2  = t /  T. 

For our shortest trajectory, T = 647, we find the values given in table 2, which may be 
contrasted with the first column of table 1. 

However this model is, as already noted, far from realistic. In particular we have 
a sharp change from CY = 0 for E = I /  k to a = 1 for E = kl, k = 1,2,3, . . . . For realistic 
trajectories the changeover is smooth and gradual (see figure 9). 

We now consider a generalisation of this random walk. 

3. Random walks with persistence and antipersistence of velocity 

3.1. Elementary properties of the model 

The speed is still constant at v and changes at fixed intervals T. However if the velocity 
is +v  (or -U) in a given interval, it is +v  (or - v )  with probability p in the subsequent 
interval and -U (or + U )  with probability q = 1 - p .  This is a Markov process. For p = $ 
we recover the simple walk of 0 2. 

It is elementary to determine the velocity autocorrelation function. It is 

4u( k7 < t < ( k  + 1 ) ~ )  = ( 2 p  - 1) k = 0,1, . . . (3.1) 
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\ 

Figure 2. The computed finite-fractal data for the simple random walk for the trajectories 
in table 1. The broken lines are for an infinite trajectory, shifted for finite L,. The values 
of In,[ L( E ) /  I ]  for In,( E /  I )  = 0 correspond to the values of L,. For clarity only values for 
octaves and approximate semi-octaves of E /  I are plotted and the lines joining the points 
are to aid the eye. 

Table 2. Mean-square distance diffused in time t for the trajectory of table 1 with T / T  = 64. 

~~ ~ ~ 

t/ 7 1 2 3 4 8 16 
1 2.08 3.18 4.29 8.79 16.9 (x2( t ) ) /  I* 

We define a mean free path, E , ,  again by E,  = vr,. 
For p > i ,  & ( t )  decays in steps and for p < f ,  & ( t )  is oscillatory in steps. In 

particular, for p = 1 

4dt) = 1 r, /r  = E 

i.e. free flight, and for p = 0 

r , / r  = f t )  is a ‘square wave’. 

For p +  1 
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Before investigating L( E )  we give an elementary deduction of (x’)( 2 ) .  The diagram 
required is shown in figure 3. The ‘flow’ of probability is more complex than for figure 
1 because we have to keep track of the sign of the velocity in the previous step. 

(x2( n 7 ) ) /  Z2 = 1 

For small values of t = n7 we can show that 

for n = 1 

= 2 + 4( p - 5) 
= 3 + 8 ( p - i) + 8 ( p - f )’ 

for n = 2 

for n = 3  

We postulate that 

( x 2 ( n 7 ) ) Z 2 = n + 2 ( n - 1 ) ( 2 p - 1 )  

+ 2( n - 2)(2p - 1)2  + 2( n - 3)(2p - 1 )3  + . . . to n terms 

i.e. 

n =0,  1,2 . .  . . . (2p - l )  
[ 1 - (2p - l )“ ]  (3.4) 

This result is shown to be exact in appendix 1 .  
Alternatively we can calculate (x’) from actual trajectories, calculated as in Q 2, by 

a modest elaboration of the program. For this we used a trajectory with an elapsed 
time of T/7=219=542288 steps, which corresponded to the limit of the fast store 
available. The results correspond to equation (3.4) to the computational accuracy. 

For large n (3.4) yields 

x l l  

- 3  - 2  - 1  0 1 2 3 

1 -  - 
tI7 I( 112 

4 

Figure 3. Diagram for the evaluation of (x2) for the random walk with persistence of 
velocity (5 3). 
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This may be compared with the standard limiting form for diffusion in one dimension 

(x’) = 2Dt + y t+m 

so that 

As expected D( p + 1) + 0;) and D( p + 0 )  + 0. For realistic liquids y is positive (Rahman 
1964). The result for D ( p )  is given by van Beijeren (1982) (his equation 4.21). 

3.2. The jinite-fractal properties of this model 

We now calculate L(E). It is obvious that, for E = 1, 

L( I ) /  L, = 1 for all p.  (3.7) 
For E = 21 we get a generalisation of figure 1 which is given in figure 4. The pattern 
repeats for t = kT, k even, and 

-- - 
7 ( P + P 4 + P q 2 + .  . .) 

so that 

L(21)/ L, = p.  

X l l  

- 2  - 1  0 1 2 
0 

2 

t l T  

3 

4 

5 

(3.8) 

x 112 

Figure 4. Diagram for the evaluation of ( t (21) )  for trajectories with persistence of velocity. 



2802 J G Powles and G Rickayzen 

For E > 21 this becomes too tedious. However, again for large E we can use the diffusion 
limit as in 0 2 but with D ( i )  replaced by D ( p )  from (3.6) so that 

( t ( & ) ) / T +  ( E / U 2 ( 1  - P ) / P  

L( E )/ L, + ( E /  u - ' P /  ( 1 -PI. 

and, cf (2.7'), 

(3.9) 

Hence for E / ~ + c o ,  a + l ( D f + 2 )  for any p ,  except p = O  or 1. 
The general result can be readily calculated to any desired accuracy for any p by 

direct computation of a trajectory. We have done this for a trajectory of 219 steps. 
The exact result (3.8) is readily tested. The limiting result (3.9) is more difficult to test 
numerically for p # i because of slow convergence, in part due to the shift occasioned 
by the factor p / ( l  - p )  in (3.9), but there seems little doubt that this asymptotic value 
is approached. The numerical results are given in figure 5 for a number of values of 
p from A to 2. 

The intercepts on the line Inz( L( E) /L , )  = 0 for p > i and on the line In2( E /  I )  = 0 
for p < i correspond to the asymptotic result (3.9). The full point on the curves for 
p > i corresponds to E = E,  = h u / r  (cf (3.2)). 

Having checked the general behaviour by computation we now obtain, by elemen- 
tary methods, an expression for L ( E )  which is exact. 

Figure 5. Computed values of L ( E ) / &  as a function of E, plotted logarithmically (to base 
2) for trajectories of elapsed time 219+ for various persistences (and antipersistences) of 
velocity corresponding to the values of p adjacent to the curves. The full straight lines 
join the points for E / I = Z "  and 3x2"' given by equation (3.12). The intercepts on the 
axes correspond to the limiting straight lines given by equation (3.9). The full points on 
the curves for p > f correspond to E = E,. 
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We have the exact results (3.7) and (3.8) and the asymptotic result (3.9). We now 
obtain the result for L(31) to order q2.  The diagram for this is given in figure 6 .  The 
actual values are one-half times those given, for convenience. Only one-half of the 
diagram is shown, as it is symmetrical about x = 0. The diagram terminates at t = 11 T 

so that an exact result is obtained to order q2.  The result is 

( t ( 3 1 ) ) / 7  = 3(1 +2q+2q2)  +o(q3) 

so that 

L(31)/L,= ( 1  + 2 q + 2 q * + .  . .)-'. 

If this series continues in like manner we have 

L(30/L,  = P/(2  -PI. 

Similarly for L(41) the lattice terminates at t = 167 and we find 

L(41) /L ,=(1+3q+3q2+ .  . .)-'. 

(3.10) 

Again if this series continues we have 

L(41)/L,=P/(3-2P). 

X l l  
- 3  - 2  -1 0 

(3.11) 

Figure 6. The diagram for calculating ( r ( 3 1 ) )  but only retaining values of the probabilities 
to order q 2 .  Note that the ladder terminates at t = 1 1  7. Only half of the symmetric diagram 
is given. Actual probabilities are one-half of those indicated. 
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If (3.7), (3.8), (3.10) and (3.11) continue and are consistent with the asymptotic limit 
(3.9) we have 

(3.12) L(nl)/L, = p/ [n ( l  - P I  + (2p - 111 n integral. 

Putting (3.12) in canonical form we have 

L(E)/Lc=[p/( l -P) l [ (E/1)+(2p-1)/(1 (3.12’) 

By comparison with the simulation results given in figure 5 and bearing in mind that 
the scatter for large E (note the logarithmic scale) may be ignored in view of (3.9), 
which is also consistent with (3.12), we conclude that (3.12) is exact whether q is small 
or not. Indeed it is true even for q + 1 ( p  + O)!  It is a remarkably simple result. 

It is also useful to express (3.12) in terms of E,  when 

U & ) /  L C  = 12 - ( I /  &,)I/[(&/ E , )  + 2 - 2(1/ 4 1 .  
The relations (3.12) are shown to be exact in appendix 2. 

(3.12”) 

3.3. The special case p +  1 

In the limit E ,  >> 1 (i.e. p + 1 )  we have the even simpler result that 

L ( & ) / L , +  1/(&/2E,+ 1 ) .  (3.13) 

In this case the finite-fractal properties are entirely determined by the value of the 
velocity autocorrelation time only-apart from the trivial quantity (U). 

It is readily proved by elementary methods that result (3.13) is exact. For p + 1 ,  
we have q + 0. Draw a ‘ladder’ as in figure 4 for a few values of E = nl, say n = 2, 4 
and 6, but retain probabilities only to order q. It is then easy to see that the general 
form of the ladder for E = nl from t = n7 onwards is as in figure 7. The first ‘absorption’ 
is at t = n7 with probability [ 1 - ( n  - l)q]. The subsequent absorptions are at t = 
(n + 2 ) ~ ,  (n  + 4 ) r .  . . , the probability is always q and there are n absorptions in total. 
Hence 

( t (  n1))/7 = n[ 1 - ( n  - l )q ]  + q [ (  n + 2) + (n + 4 )  +. . . (n - 1) terms] 

= n [ l + ( n - l ) q ]  to order q(n2q < 1). 

Thus for n >> 1 

L ( E ) / L ,  = (1 + nq)-’ to order q. 

But n = & / I  and 2 ~ ,  = l / q  exactly. Therefore 

L( E ) / L ,  = (1 + E/2&,)-1 for q + O  

which is (3.13). 
We recall that for p +  1,  4,(t) is exponential (cf (3.3)) and T,/T+w. 

The slope, a ( & ) ,  of the finite-fractal plot for this special case, (3.13), is given by 

( E /  2E,) 
(&/2&,  + 1 ) ‘  

a ( & )  = (3.14) 

Notice that a ( E + 0) + 0 and a ( E +a) + 1 and the transition is smooth and gradual, 
cf the curve for p = in figure 5 .  
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\ X l l  

Figure 7. Diagram for the proof of equation (3.13).  The probabilities should all be 
multiplied by one-half. Only part of half the diagram, which is symmetrical about x = 0, 
is shown. It continues upwards, downwards and to the right to an extent depending on 
the value of n. 

a ( & )  is within 5 %  of its asymptotic value of unity for E / ~ E ,  = 19. Let us estimate 
the length of the trajectory required to show that the limiting slope is unity to 5%. To 
a very rough approximation 

E ~ , , = ( x ~ ( T ) ) = ~ D ( ~ +  1)T=2u27,T 

and E, = UT,. Thus for E / ~ E ,  = 19 we require 

T = 700~".  

In a usual simulation one would use a computational time step of, say, A t  = 7,120 so 
that we require 

T = 14 000At i.e. 14 000 time steps 

which is quite long by usual standards. But this is for a q5,(t) which is exponential, 
which is short-ranged in the sense that it has no algebraic long-time tail. For a q5,(t) 
with a long-time tail one would surely have to simulate the liquid for at least a factor 
ten longer (the addition of a tail increases T ,  but not in proportion). Hence for a 
realistic liquid we estimate that one may require the order of 150 000 time steps. This 
seems therefore to be an explanation of why Powles and Quirke (1984), Powles (1985) 
and Toxvaerd (1985) did not observe the limiting value of a. Rapaport (1984) for the 
hard-sphere fluid was able to get much nearer to the asymptotic value of a, although 
the simulations required were still very long. 
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For what appears to be this model for ‘Brownian motion’, Takayasu (1982)  finds, 
by a quite different and presumably exact analysis, the same formula (3 .14 )  but with 
2.5, replaced by what he calls d and refers to as the ‘mean free path’. (Takayasu’s 
equation (20)’, but note that his a ( r )  corresponds to our a ( ~ ) + l ] . )  This apparent 
discrepancy may well be due to different definitions of mean free path. 

All the results in this paper are, we emphasise, for the one-dimensional random 
walks, in particular (3 .13) .  So is Takayasu’s (1982)  result. Nevertheless Tsurumi and 
Takayasu (1986)  have shown that equation (3 .13)  may be fitted remarkably well to the 
simulation results of Powles and Quirke (1984)  and Rapaport (1984)  (see also figure 
9 ) .  However Tsurumi and Takayasu did not have independent values of d which they 
used as a fitting parameter. In fact Powles (1985)  also measured E,  in his simulations. 
The fitted value of d corresponds to 2.5, to about 20%. It would seem, therefore, that 
equation (3 .13) ,  with 2 ~ , ,  is quite a good fit, at least for this state, for a realistic 
(simulated but three-dimensional) liquid. The agreement is all the more remarkable 
because the actual 4U(t)  is not remotely like an exponential. 

Finally, formula (3 .13)  was found by Matsuura er a1 (1986)  to fit remarkably well 
in a finite-fractal analysis of the trajectories of latex suspensions of polystyrene spheres 
and of the motion of bacteriophage T4 particles in solution by direct observation. 
However, no test was made as to whether the parameter 2.5, in (3 .13)  is correct for 
these three-dimensional macroscopic trajectories. 

4. Crystals, liquids and gases 

Although our model is rather crude, apart from being one dimensional, it appears, as 
discussed in Q 3,  to be moderately realistic for realistic liquids and suspensions for 
p = 1. We may expect the same to be true for gases since liquids can change continuously 
to gases by a suitable path in the (P, T )  diagram. As already noted, for p + 1 we have 
a model for a perfect gas. 

We noted in 0 3 that for p + 0 the model corresponds to a particle in a box which 
is an approximation for an atom in a perfect crystal. However, in a real crystal the 
atoms can diffuse, albeit slowly, and if we had a long enough trajectory we still ought 
to observe a fractal ‘tail’ with a + 1 which is predicted by (3 .12)  for p small (see figure 
8 ) .  

What is not observed in nature is the case p = which we call the ‘mathematical 
fluid’. Even for macroscopically large ‘Brownian’ particles in solution the changeover 
to a + 0 must be observed if E is small enough. It is not normally observed because 
such an E would have to be of microscopic dimensions. So what is normally regarded 
as Brownian motion is analogous to the ‘real liquid’, but one which is only observed 
for such large values of E that the curved part of the plot is not measured and such 
that the shift in the asymptotic line with a - 1 is negligible in the observations. 

A crystal cannot change continuously to a liquid. It is a first-order phase transition. 
In our model this corresponds to not being able to go continuously (by increasing p 
from p = 0) from ‘real crystal’ to ‘real liquid’ without passing through a non-physical 
state, the ‘mathematical fluid’. An idealised diagram illustrating these remarks is given 
in figure 8 .  

We have already reported finite-fractal plots for a simulated Lennard-Jones 12-6 
(sp 2.5) fluid at a typical liquid state point. Since the vapour pressure of this fluid is 
known (Powles 1984) the coexisting vapour at the same temperature can be readily 
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I n k )  - 
Perfect gas 

\ 
Figure 8. Diagrammatic representation of equation (3.12) for various values of the per- 
sistence probability, p, as described in the text., 

8 I I I I 1 

Figure 9. Simulation results for particles interacting with a Lennard-Jones 12-6 sp  2.5 
potential. The three sets of points are for the liquid, the coexisting vapour and the crystal, 
respectively, all at the same temperature, 0.93 kT/&. Note that the liquid is not at the triple 
point and the crystal is under substantial pressure ( P =  IO&/u3). U is the length parameter 
in the potential and is effectively the atomic diameter. The broken curves for liquid and 
vapour are for equation (3.13) and the curve for the crystal merely guides the eye. 
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simulated for the same number of simulation steps as for the liquid. The result of the 
finite-fractal analysis is shown in figure 9. We are even further from the limiting 
behaviour of a, because for the vapour T" and E, are about 25 times larger than for 
the liquid. 

It is also possible to simulate the (FCC) crystal at the same temperature by increasing 
the pressure (actually by choosing a high enough density in the 'microcanonical' 
simulation). This is slightly arbitrary but the density chosen is about that which would 
be suitable for a real argon crystal. This density and temperature are such that D is 
many orders of magnitude smaller than for the liquid. Indeed it is not measurable for 
any reasonable simulation length. Thus our simulations were not long enough to reveal 
in figure 9 the lower part of the curve for 'real crystal' in the diagram of figure 8. In 
fact this curve for the crystal in figure 9 falls precipitously to negative ordinates for a 
very small further increase in E.  The critical value of E is about a/4 which is about 
the expected value for the amplitude of vibration of an atom in the crystal lattice. 
Note that . ( E )  for the crystal is greater than unity for the largest values of E. 

Notice that in figure 9, L,, i.e. L(E + 0), is the same for all three states, crystal, 
liquid and vapour. This is so because (recall L,=(u)T)  (U) for a classical system is 
independent of the state at a given temperature and the three simulations were of the 
same duration, T. 

As a guide to the eye we have included a straight line corresponding to a = 1, with 
the knee to a = 0 at a somewhat arbitrary position, marked 'mathematical liquid' (cf 
figure 2). When the crystal melts the finite-fractal plot 'jumps over' this line. 

We shall report on the behaviour of this and other models in three dimensions 
elsewhere (Powles and Fowler 1986). 
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Appendix 1. Proof of equation (3.4) 

Let p , ( x ,  t )  be the probability flowing into the point (x, t )  from ( x r  I )  at time ( t  - T ) .  

Then 

p*(x ,  t + T ) = P P * ( X 7 1 ,  t ) + ' @ T ( x * l ,  t ) .  

Use units of 1 and T, write 9 [ [ p ( x ,  t ) ] = p ( k ,  t )  and recall that 9 [ f ( x * 1 ) ] =  
exp(*ikl)9[f( t ) ] .  Then 

p d k ,  m + 1) = p  exp(Wc)p,(k, m )  + q exp(*ik)p,(k, m ) .  

This difference equation has a solution of the form 

2 

p*(k, m )  = 1 A+i(k).Y* 
i = l  

Hence (after cancelling a'") 

A,a = p  exp(Fik)A,+q exp(*ik)Ai,. 
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We have A, = 0 unless 

[a - p  exp(-ik)][a - p  exp(ik)] = q2 

i.e. 

a,,,=p COS k(+, - ) [ p ’  COS k- (p-q) ]”2 .  

At t = 0, the particle is definitely at the origin and is equally likely to be moving in 
either direction. Hence p*(x, 0) =$(x), so that p,(k,  0) = 4, and 

A*,(k)+A*,(k) =l. 

p+(x, 1 )  = i S ( X  T 1 )  

For m = 1 ( T S  t < 2 7 )  

so that 

p,( k, 1) = $ exp(Fik). 

Hence 

A,l( k )a ,  + A+2( k)a2  = 1 exp( Fi k). 
Therefore 

A*1,2(k) = ( - 9  + ) t b 2 , 1  -exp(Fik)l/(a,  - a*) 

so that p (  k, t )  = p+(  k, t )  + p - (  k, t )  is determined. But 

Hence, after some algebra, 

which is (3.4). 

Appendix 2. Proof of equation (3.12) 

By reference to figure 5 it is clear that 

p + ( x ,  t + 1 )  = pp+b - 1, t )  + W-(X + 1, t )  

p - ( x ,  t + l ) = p p _ ( x + l ,  t)+Qp+(x-l, t )  

and 

where p*(x, t )  is the probability of displacement to the right (or left) at position x, in 
units of 1, at time t in units of T. The boundary conditions are 

P + ( X ,  0) = f%o p+( -n ,  t )  = p - ( n ,  t )  = O  for all t 

for evaluation of L( nl).  It is convenient to put E /  1 = n = ( r  + 1).  Then the probability 
‘absorbed’ at ( r  + 1 )  at ( t  + 1 )  on the right is pp+( r, t )  and on the left is pp-(  -r, t ) .  But 
p - (  - r ,  t )  = p+(  r, t )  so that the probability absorbed at ( t  + 1) is proportional to p + (  r, t ) .  
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It is also convenient to evaluate L ( E ) / L ,  in a different way from that described in 
0 2.2, equation (2.10). For each rectilinear step of length E along the trajectory the 
corresponding contour length, ALci, depends on the step i in question. For a trajectory 
of indefinite length we have 

where (AL,) is the mean contour length for a step. But every trajectory terminating at 
time ( t  + 1) has a contour length ( t + 1)l  with probability proportional to p+( r, t )  so that 

L(E)ILc= EIWC) 

= 1+c tP+(r ,  t ) ( c P + ( r ,  0 - l  for & / I  = ( r +  1).  

so 

Put 

Then 

since S+(-r-1 ,  u ) = O .  
Similarly 

Now using 
r c PI(& 0 ) Y X  = t S-( -r ,  U )  = S+(r,  U )  

- r  

we find 

Hence 
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We require only S+( r, U). Now the left-hand side of the above equation is a polynomial 
in y of degree 2r. Hence the right-hand side must also be a polynomial in y of degree 
2r. Hence the numerator on the right-hand side must contain the factors (y  - a ) ( y  - p )  
where a, p are the roots of the quadratic in y in the denominator. Hence 

;[I- U ( P  - 4)/Y1 
s+(r9 u((1 -up/y)(py'+'+qy-'-')+(uq/y)(qy'+'+py-'-')} 

when y = a or p, where these are the solutions of 

y2- (up)-'[l+ U'( p - q)]y + 1 = 0 

ap = 1 ( a + P ) = ( u P ) - ' [ l + u ' ( p - q ) l .  

so that 

To see that the two roots lead to the same form of S+(r,  U )  one can write S+(r ,  U )  in 
a more symmetrical form. Multiply numerator and denominator by [ 1 - U( p - q)y] 
and use the quadratic equation. A little algebra then leads to 

1 - U'( p - q ) *  
s + ( r 3  = u{(y'+'+y-'-')[l ~ U ' ( P ~ ~ ) ' ] ~ U p ( P - ~ ) ( y ~ + ' - y - ' - ' ) ( y - y - ' ) } '  

Then whether one takes y = a or y = p one finds 

1-u2(p-q)'  
= u{(a'+'+ P'+ ' ) [  1 - u 2 ( p  - q y ]  - up( p - q)(a'+' -p '+ ' ) (a  - p)} '  s+(r3 

Other equivalent forms are 

and 

Putting U = 1 - 6, S > 0, we find, with frequent use of ( p  + q )  = 1 and lengthy algebra, 
that 

S+( r, 1) = 

and 

1 aS+(r ,  1-8 )  
( s + ( r ,  u) ) - ' I  = -- aS+(r ,  U )  

au 2 as I s=o 

= r + r( r + 1)( q / p ) .  

Hence 

W C )  = (1 + r ) [ l +  r ( q / p ) l  

L ( & ) / L c = [ ( & l ~ ) ( q / P ) + ( P - q ) / p l - ' .  

and, since E /  1 = (1 + r ) ,  

This is the same as equation (3.12), given that q = 1 - p .  The special cases, (3.13), etc, 
follow immediately. 
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